80 research outputs found

    Thermal dosimetry for bladder hyperthermia treatment. An overview.

    Get PDF
    The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments

    Heating technology for malignant tumors: a review

    Get PDF
    The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 degrees C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 degrees C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors

    Elevated temperatures and longer durations improve the efficacy of oxaliplatin- and mitomycin C-based hyperthermic intraperitoneal chemotherapy in a confirmed rat model for peritoneal metastasis of colorectal cancer origin

    Get PDF
    Introduction: In patients with limited peritoneal metastasis (PM) originating from colorectal cancer, cytoreductive surgery (CRS) followed by hyperthermic intraperitoneal chemotherapy (HIPEC) is a potentially curative treatment option. This combined treatment modality using HIPEC with mitomycin C (MMC) for 90 minutes proved to be superior to systemic chemotherapy alone, but no benefit of adding HIPEC to CRS alone was shown using oxaliplatin-based HIPEC during 30 minutes. We investigated the impact of treatment temperature and duration as relevant HIPEC parameters for these two chemotherapeutic agents in representative preclinical models. The temperature- and duration- dependent efficacy for both oxaliplatin and MMC was evaluated in an in vitro setting and in a representative animal model. Methods: In 130 WAG/Rij rats, PM were established through i.p. injections of rat CC-531 colon carcinoma cells with a signature similar to the dominant treatment-resistant CMS4 type human colorectal PM. Tumor growth was monitored twice per week using ultrasound, and HIPEC was applied when most tumors were 4-6 mm. A semi-open four-inflow HIPEC setup was used to circulate oxaliplatin or MMC through the peritoneum for 30, 60 or 90 minutes with inflow temperatures of 38°C or 42°C to achieve temperatures in the peritoneum of 37°C or 41°C. Tumors, healthy tissue and blood were collected directly or 48 hours after treatment to assess the platinum uptake, level of apoptosis and proliferation and to determine the healthy tissue toxicity. Results: In vitro results show a temperature- and duration- dependent efficacy for both oxaliplatin and MMC in both CC-531 cells and organoids. Temperature distribution throughout the peritoneum of the rats was stable with normothermic and hyperthermic average temperatures in the peritoneum ranging from 36.95-37.63°C and 40.51-41.37°C, respectively. Treatments resulted in minimal body weight decrease (&lt;10%) and only 7/130 rats did not reach the endpoint of 48 hours after treatment. Conclusions: Both elevated temperatures and longer treatment duration resulted in a higher platinum uptake, significantly increased apoptosis and lower proliferation in PM tumor lesions, without enhanced normal tissue toxicity. Our results demonstrated that oxaliplatin- and MMC-based HIPEC procedures are both temperature- and duration-dependent in an in vivo tumor model.</p

    Fast adaptive temperature-based re-optimization strategies for on-line hot spot suppression during locoregional hyperthermia

    No full text
    Background: Experience-based adjustments in phase-amplitude settings are applied to suppress treatment limiting hot spots that occur during locoregional hyperthermia for pelvic tumors. Treatment planning could help to further optimize treatments. The aim of this research was to develop temperature-based re-optimization strategies and compare the predicted effectiveness with clinically applied protocol/experience-based steering. Methods: This study evaluated 22 hot spot suppressions in 16 cervical cancer patients (mean age 67 _ 13 year). As a first step, all potential hot spot locations were represented by a spherical region, with a user-specified diameter. For fast and robust calculations, the hot spot temperature was represented by a user-specified percentage of the voxels with the largest heating potential (HPP). Re-optimization maximized tumor T90, with constraints to suppress the hot spot and avoid any significant increase in other regions. Potential hot spot region diameter and HPP were varied and objective functions with and without penalty terms to prevent and minimize temperature increase at other potential hot spot locations were evaluated. Predicted effectiveness was compared with clinically applied steering results. Results: All strategies showed effective hot spot suppression, without affecting tumor temperatures, similar to clinical steering. To avoid the risk of inducing new hot spots, HPP should not exceed 10%. Adding a penalty term to the objective function to minimize the temperature increase at other potential hot spot locations was most effective. Re-optimization times were typically ~10 s. Conclusion: Fast on-line re-optimization to suppress treatment limiting hot spots seems feasible to match effectiveness of ~30 years clinical experience and will be further evaluated in a clinical setting

    Hyperthermia treatment planning: Clinical application and ongoing developments

    No full text
    Hyperthermia is a proven clinical anti-cancer treatment, used in combination with radiotherapy and/or chemotherapy. During hyperthermia, tumour tissue is heated to 40-43 °C using radiofrequency or microwave antennas, which strongly enhances effectiveness of radiotherapy and chemotherapy. Hyperthermia treatment quality depends on tumour temperatures achieved and treatment planning (i.e., simulation and optimization of absorbed power and temperature distributions) could be very useful to ensure and improve treatment quality. Hyperthermia treatment planning was mainly a research tool for decades, because of high computational costs and limited quantitative accuracy of treatment planning predictions due to a lack of patient-specific tissue properties. Thanks to developments over the past decade, treatment planning becomes increasingly important in the clinical workflow. Presently, main clinical applications of hyperthermia treatment planning are 1) applicator selection, 2) heating ability evaluation and 3) on-line treatment guidance. To improve the reliability and further increase applicability of treatment planning, ongoing developments focus on 1) dielectric imaging to derive patient-specific dielectric properties, 2) advanced thermal modelling including discrete vasculature and 3) biological modelling to predict the radiosensitizing effect of hyperthermia in terms of equivalent radiation dose. The increased clinical application and ongoing efforts will further improve treatment quality

    Adapt2Heat: treatment planning-assisted locoregional hyperthermia by on-line visualization, optimization and re-optimization of SAR and temperature distributions

    No full text
    Background: Hyperthermia treatment planning is increasingly used in clinical applications and recommended in quality assurance guidelines. Assistance in phase-amplitude steering during treatment requires dedicated software for on-line visualization of SAR/temperature distributions and fast re-optimization in response to hot spots. As such software tools are not yet commercially available, we developed Adapt2Heat for on-line adaptive hyperthermia treatment planning and illustrate possible application by different relevant real patient examples. Methods: Adapt2Heat was developed as a separate module of the treatment planning software Plan2Heat. Adapt2Heat runs on a Linux operating system and was developed in C++, using the open source Qt, Qwt and VTK libraries. A graphical user interface allows interactive and flexible on-line use of hyperthermia treatment planning. Predicted SAR/temperature distributions and statistics for selected phase-amplitude settings can be visualized instantly and settings can be re-optimized manually or automatically in response to hot spots. Results: Pretreatment planning E-Field, SAR and temperature calculations are performed with Plan2Heat and imported in Adapt2Heat. Examples show that Adapt2Heat can be helpful in assisting with phase-amplitude steering, e.g., by suppressing indicated hot spots. The effects of phase-amplitude adjustments on the tumor and potential hot spot locations are comprehensively visualized, allowing intuitive and flexible assistance by treatment planning during locoregional hyperthermia treatments. Conclusion: Adapt2Heat provides an intuitive and flexible treatment planning tool for on-line treatment planning-assisted hyperthermia. Extensive features for visualization and (re-)optimization during treatment allow practical use in many locoregional hyperthermia applications. This type of tools are indispensable for enhancing the quality of hyperthermia treatment delivery

    The Relevance of High Temperatures and Short Time Intervals Between Radiation Therapy and Hyperthermia: Insights in Terms of Predicted Equivalent Enhanced Radiation Dose

    No full text
    Purpose: The radiosensitization effect of hyperthermia can be considered and quantified as an enhanced equivalent radiation dose (EQDRT), that is, the dose needed to achieve the same effect without hyperthermia. EQDRT can be predicted using an extended linear quadratic model, with temperature-dependent parameters. Clinical data show that both the achieved temperature and time interval between radiation therapy and hyperthermia correlate with clinical outcome, but their effect on expected EQDRT is unknown and was therefore evaluated in this study. Methods and Materials: Biological modeling was performed using our in-house developed software (X-Term), considering a 23- × 2-Gy external beam radiation scheme, as applied for patients with locally advanced cervical cancer. First, the EQDRT was calculated for homogeneous temperature levels, evaluating time intervals between 0 and 4 hours. Next, realistic heterogeneous hyperthermia treatment plans were combined with radiation therapy plans and the EQDRT was calculated for 10 patients. Furthermore, the effect of achieving 0.5°C to 1°C lower or higher temperatures was evaluated. Results: EQDRT increases substantially with both increasing temperature and decreasing time interval. The effect of the time interval is most pronounced at higher temperatures (>41°C). At a typical hyperthermic temperature level of 41.5°C, an enhancement of ∼10 Gy can be realized with a 0-hour time interval, which is decreased to only ∼4 Gy enhancement with a 4-hour time interval. Most enhancement is already lost after 1 hour. Evaluation in patients predicted an average additional EQDRT (D95%) of 2.2 and 6.3 Gy for 4- and 0-hour time intervals, respectively. The effect of 0.5°C to 1°C lower or higher temperatures is most pronounced at high temperature levels and short time intervals. The additional EQDRT (D95%) ranged between 1.5 and 3.3 Gy and between 4.5 and 8.5 Gy for 4- and 0-hour time intervals, respectively. Conclusions: Biological modeling provides relevant insight into the relationship between treatment parameters and expected EQDRT. Both high temperatures and short time intervals are essential to maximize EQDRT

    Evaluation of thermal dose effect in radiofrequency-induced hyperthermia with intravesical chemotherapy for nonmuscle invasive bladder cancer

    No full text
    AbstractPurpose In nonmuscle invasive bladder cancer (NMIBC) patients who fail standard intravesical treatment and are unfit or unwilling to undergo a radical cystectomy, radiofrequency (RF)-induced hyperthermia combined with intravesical chemotherapy (RF-CHT) has shown promising results. We studied whether higher thermal dose improves clinical NMIBC outcome.Methods and materials The cohort comprised 108 patients who started with RF-CHT between November 2013 and December 2019. Patients received intravesical mitomycin-C or epirubicin. Bladder hyperthermia was accomplished with an intravesical 915 MHz RF device guided by intravesical thermometry. We assessed the association between thermal dose parameters (including median temperature and Cumulative Equivalent Minutes of T50 at 43 °C [CEM43T50]) and complete response (CR) at six months for patients with (concomitant) carcinoma in situ (CIS), and recurrence-free survival (RFS) for patients with papillary disease.Results Median temperature and CEM43T50 per treatment were 40.9 (IQR 40.8–41.1) °C and 3.1 (IQR 0.9–2.4) minutes, respectively. Analyses showed no association between any thermal dose parameter and CR or RFS (p > 0.05). Less bladder spasms during treatment sessions was associated with increased median temperature and CEM43T50 (adjusted OR 0.01 and 0.34, both p 40.5 °C for at least 45 min while respecting individual tolerability, including occurrence of bladder spasms

    Dedicated 70 MHz RF systems for hyperthermia of challenging tumor locations

    No full text
    Hyperthermia (i.e. heating of tumor tissue to 40-43°C) is used in clinical oncology to enhance the therapeutic effect of chemotherapy and radiotherapy. Many tumor sites are heated either by a single RF or MW antenna positioned on the tumor location, or by a phased array positioned around the patient. Superficial tumors are generally heated with MW antennas (434-2450 MHz) and deep-seated tumors with RF antennas (70-150 MHz). These devices cover the major, more common tumor sites, but more rare locations require more dedicated applicators. We discuss dedicated RF systems aiming for heating semi-deep-seated tumors in the leg, breast, and upper thorax. Clinical results show that adequate heating is possible with these systems, with achieved temperatures in the therapeutic range
    • …
    corecore